TABLE OF CONTENTS
ZZdebug/mkproflik [ Functions ]
NAME
mkproflik --- compute profile likelihood
FUNCTION
Compute profile likelihood of regression parameters for a single process. This is an R implementation of the Fortran routine fproflik and is for debugging only.
SYNOPSIS
1583 mkproflik <- function(m, Ji, betahat, datamat, as, Uijmat)
INPUTS
m number of clusters Ji cluster sizes betahat regression coefficient estimates datamat data matrix generated by makedatamat as matrix of discretization breakpoints Uijmat matrix of frailty estimates
OUTPUTS
loglik profile loglikelihood of betahat conditional on the other parameters
SOURCE
1586 { 1587 # Compute mrs using makemrs function 1588 mrss <- makemrs(m, Ji, datamat, as, betahat, Uijmat) 1589 mrs <- mrss$mrs 1590 loglik <- 0 1591 covs <- as.matrix(datamat[, -c(1:8)], dim(datamat)[1], length(betahat)) 1592 # Loop over the entries in the data matrix, but do not loop over the s 1593 # values (delta can only be 1 on smax) 1594 for(ind in 1:dim(datamat)[1]){ 1595 i <- datamat[ind, "i"] 1596 j <- datamat[ind, "j"] 1597 k <- datamat[ind, "k"] 1598 smax <- datamat[ind, "smax"] 1599 smin <- datamat[ind, "smin"] 1600 r <- datamat[ind, "r"] 1601 delta <- datamat[ind, "delta"] 1602 # Add the term corresponding to each row in the data matrix 1603 # to the loglikelihood 1604 loglik <- loglik + delta * (log(Uijmat[i, j]) - log(mrs[r, smax]) + 1605 as.matrix(betahat)%*%covs[ind, ]) 1606 } 1607 return(loglik) 1608 }