TABLE OF CONTENTS
estimation/fmakealphars2 [ Functions ]
NAME
fmakealphars2 --- Fortran wrapper for fmkalpha2
FUNCTION
Compute the MLEs for the baseline hazard parameters alphars, given estimates of regression parameters andf frailties, for a single recurrent event process.
This works in the same way as makealphars2
SYNOPSIS
327 fmakealphars2 <- function(m, Ji, datamat, betahat, as, Uijmat, smooth)
INPUTS
m number of clusters Ji cluster sizes datamat data matrix generated by makedatamat betahat vector of regression parameter estimates as matrix of discretization breakpoints for each stratum Uijmat matrix of frailty estimates smooth boolean to indicate whether the output should be smoothed
OUTPUTS
alphars matrix of baseline hazard parameters of size p x K containing the hazard estimate for each stratum and discretization interval
SOURCE
330 { 331 # Allocate storage 332 alphars <- matrix(0, dim(as)[1], dim(as)[2]) 333 # Split the data matrix into different components 334 covs <- matrix(datamat[, -(1:8)], dim(datamat)[1], dim(datamat)[2] - 8) 335 ncovs <- dim(covs)[2] 336 d <- dim(covs)[1] 337 index <- datamat[, c("i", "j", "k", "r", "smin", "smax")] 338 delta <- datamat[, "delta"] 339 times <- datamat[, "time"] 340 341 # Fortran call 342 out <- .Fortran("fmkalpha2", 343 betahat = as.double(betahat), 344 index = as.integer(index), 345 delta = as.double(delta), 346 times = as.double(times), 347 Z = as.double(covs), 348 alphars = as.double(alphars), 349 as = as.double(as), 350 Uijmat = as.double(Uijmat), 351 d = as.integer(d), 352 ncovs = as.integer(ncovs), 353 nr = as.integer(dim(as)[1]), 354 ns = as.integer(dim(as)[2]), 355 m = as.integer(m), 356 maxj = as.integer(max(Ji)) 357 ) 358 # Extract output 359 alphars <- matrix(out$alphars, dim(alphars)[1], dim(alphars)[2]) 360 361 if(smooth){ 362 alphars <- smoothalpha(alphars, as) 363 } 364 365 return(alphars) 366 }