TABLE OF CONTENTS
methodsUni/cleanunirecoutput [ Functions ]
NAME
cleanunirecoutput --- clean output of bivrec.agdata
FUNCTION
Construct the unirec object by removing references to the second dummy process needed by bivrec.agdata during the fitting, and restore the original stratum, process, cluster and subject names that were stripped by unirec.formula
SYNOPSIS
204 cleanunirecoutput <- function(fit, clusternames, subjnames, stratnames, processname)
INPUTS
fit a fit returned by unirec.agdata clusternames vector of original cluster IDs subjnames vector of original subject IDs stratnames vector of original stratum IDs processnames vector of original process IDs
OUTPUTS
an object of class unirec, with properly named components
SOURCE
207 { 208 out <- NULL 209 out$call <- fit$call 210 # regression 211 out$regression = list(coefficients = fit$regressionoutput$betahat, 212 loglik = fit$regressionoutput$loglik1) 213 # frailties 214 clust <- fit$frailtyoutput$Uihat 215 subj <- fit$frailtyoutput$Uijhat 216 names(clust) <- clusternames 217 names(subj) <- subjnames 218 out$frailty = list(clust = clust, subj = subj) 219 # dispersion 220 disp <- list(clust = fit$dispparams$sigma2hat, subj = fit$dispparams$nu2hat) 221 out$dispersion <- disp 222 # baseline 223 breaks <- fit$regressionoutput$as 224 basehaz <- fit$regressionoutput$alphars 225 rownames(breaks) <- rownames(basehaz) <- stratnames 226 out$hazard = list(breaks = breaks, hazard = basehaz) 227 # summaries 228 summary.reg <- fit$summary.reg[, 1:3] 229 colnames(summary.reg) <- c("coef", "sd", "pval") 230 summary.disp <- fit$summary.disp[c(1, 3)] 231 names(summary.disp) <- c("clust", "subj") 232 out$summaries <- list(regression = summary.reg, dispersion = summary.disp) 233 attr(out, "processname") <- processname 234 class(out) <- "unirec" 235 return(out) 236 }