TABLE OF CONTENTS
methodsBiv/cleanbivrecoutput [ Functions ]
NAME
cleanbivrecoutput --- clean output of bivrec.agdata
FUNCTION
Construct the bivrec object and restore the original stratum, process, cluster and subject names that were stripped by bivrec.formula
SYNOPSIS
280 cleanbivrecoutput <- function(fit, clusternames, subjnames, stratnames, processnames)
INPUTS
fit a fit returned by bivrec.agdata clusternames vector of original cluster IDs subjnames vector of original subject IDs stratnames vector of original stratum IDs processnames vector of original process IDs
OUTPUTS
an object of class bivrec, with properly named components
SOURCE
283 { 284 out <- NULL 285 out$call <- fit$call 286 # regression 287 out$regression = list(coefficients1 = fit$regressionoutput$betahat, 288 coefficients2 = fit$regressionoutput$betadhat, 289 loglik1 = fit$regressionoutput$loglik1, 290 loglik2 = fit$regressionoutput$loglik2) 291 # frailties 292 clust1 <- fit$frailtyoutput$Uihat 293 clust2 <- fit$frailtyoutput$Vihat 294 subj1 <- fit$frailtyoutput$Uijhat 295 subj2 <- fit$frailtyoutput$Vijhat 296 names(clust1) <- names(clust2) <- clusternames 297 names(subj1) <- names(subj2) <- subjnames 298 out$frailty = list(clust1 = clust1, clust2 = clust2, subj1 = subj1, subj2 = subj2) 299 # dispersion 300 disp <- fit$dispparams 301 names(disp) <- c("clust1", "clust2", "subj1", "subj2", "cov") 302 out$dispersion <- disp 303 # baseline 304 breaks1 <- fit$regressionoutput$as 305 breaks2 <- fit$regressionoutput$asd 306 basehaz1 <- fit$regressionoutput$alphars 307 basehaz2 <- fit$regressionoutput$alpharsd 308 rownames(breaks1) <- rownames(breaks2) <- rownames(basehaz1) <- rownames(basehaz2) <- stratnames 309 out$hazard = list(breaks1 = breaks1, breaks2 = breaks2, 310 hazard1 = basehaz1, hazard2 = basehaz2) 311 # summaries 312 summary.reg <- fit$summary.reg 313 colnames(summary.reg) <- c("coef1", "sd1", "pval1", "coef2", "sd2", "pval2") 314 summary.disp <- fit$summary.disp 315 names(summary.disp) <- c("clust1", "clust2", "subj1", "subj2", "cov", "corr") 316 out$summaries <- list(regression = summary.reg, dispersion = summary.disp) 317 attr(out, "processnames") <- processnames 318 class(out) <- "bivrec" 319 return(out) 320 }